# **SFACILITIES**



14- by 22 Subsonic Tunnel



**Low-Speed Aeroacoustics** Wind Tunnel



Flight Dynamics Research Facility



National Transonic Facility



Transonic Dynamics Tunnel



0.3-m Transonic Cryogenic Tunnel



4-Ft Supersonic Wind Tunnel



20-In Supersonic Wind Tunnel



Supersonic Low Disturbance Tunnel



8-Ft High Temperature Tunnel



Langley Aerothermodynamics Laboratory



Scramjet Test Complex

### **Doing Business with Us**

Our extensive aerospace expertise and unique ground testing capabilities will prove invaluable to your enterprise.

We're the most complete ground testing capability in the world, and we want to share with you the benefits of our decades of accomplishments.

We offer what others can't.

Infrastructure. Know-how. Experience. And most importantly -

#### Success.

#### Visit us online at:

https://researchdirectorate.larc.nasa.gov/facilities-capabilities or come see us in person at:

NASA Langley Research Center in Hampton, Virginia

#### The solution to your aerospace challenges starts by contacting:

#### **Chief Engineer for Test Operation Excellence**

NASA Langley Research Center Research Directorate Hampton, VA 23681 (757) 604-2845

https://researchdirectorate.larc.nasa.gov/contact-us/

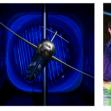




www.nasa.gov

National Aeronautics and Space Administration Langley Research Center 100 NASA Road Hampton, VA 23681-2199 www.nasa.gov/centers/langley

www.nasa.gov NP-2023-09-079-LaRC


## **Wind Tunnel Testing Guide**

at NASA Langley Research Center











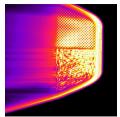















#### **CAPABILITIES AT A GLANCE**

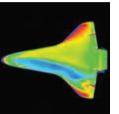
| 24-by 22-7-004 Soldward Turned (14-02)   Next 10-10-03 (448 N/h)   0 to 2.2 x 10 Pper ft   14.5*** 14.7*** x 9.0**   Atmospheric   Anticont   Art   Closed Extraction   Closed Extracti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Facility                                           | Variables                | Speed                    | Reynolds Number                       | Test Section Size       | Total Pressure           | Temperature     | Test Gas       | Туре                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------|--------------------------|---------------------------------------|-------------------------|--------------------------|-----------------|----------------|------------------------|
| Name   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SUBSONIC SPEED REGIME                              |                          |                          |                                       |                         |                          |                 |                |                        |
| Double Speed Aeroscoutic Wind Funnel (LSAWT)   Stand Streams (Data Streams reded at 175 ps)   Double Streams (Data Streams reded at 175 ps)   Double Streams (Data Streams reded at 175 ps)   Double Streams (Data Decompting to 2000 pt)   Park   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14- by 22-Foot Subsonic Tunnel (14x22)             |                          | Mach 0 to 0.3 (348 ft/s) | 0 to 2.2 x 10 <sup>6</sup> per ft     | 14.5'H x 21.75'W x 50'L | Atmospheric              | Ambient         | Air            | ′ '                    |
| TANCOLIC SHELD PLANTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Low-Speed Aeroacoustic Wind Tunnel (LSAWT)         | (76in)<br>Square Nozzle: |                          | 0 to 2.2 x 10 <sup>6</sup> per ft     | 17'H x 17'W x 34'L      |                          |                 | Air            | Open Circuit, Anechoic |
| Transmic Dynamics Tunnel (TDT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flight Dynamics Research Facility (FDRF)           |                          | •                        | 0 to 1.1 x 10 <sup>6</sup> per ft     | 20'W (12-Sided) x 24'L  | Atmospheric              | Actively Cooled | Air            | ' '                    |
| National Transonic Profit   New Gas Mode   Mach 0 to 1.2   0.1 to 9.6 x 10 <sup>6</sup> per ft   16 <sup>6</sup> H x 10 <sup>6</sup> W x 90 to 1.0   0.5 pals to atm   70° to 130°F   R, 134a   Glosed Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRANSONIC SPEED REGIME                             |                          |                          |                                       |                         |                          |                 |                |                        |
| National Transonic Facility (NTF)   Cryogenic: Mach 0.1 to 1.0.0   4 to 1.45 x 1.0 <sup>6</sup> per ft   1.7 to 1.20 pis   2.50° to 1.30° ft   Nirogen   Closed Circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Transonic Dynamics Tunnel (TDT)                    | 7.7.7                    |                          |                                       | 16' H x16'W x 30'L      | 0.5 psia to atm          | 70° to 130°F    | •              | Closed Circuit         |
| Supersonic Unitary Plan Wind Tunnel (UPWT)   Test Section 1: Test Section 2:   Mach 1.5 to 2.9   Nach 2.3 to 4.6   No.5 to 1.4 x 106 per ft   No.5 to 8.4 x 106 per ft   No.5 to 8.4 x 106 per ft   No.5 to 8.4 x 106 per ft   No.5 to 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | National Transonic Facility (NTF)                  |                          |                          | · ·                                   | 8.2'H x 8.2'W x 25'L    | 14.7 to 120 psia         |                 | ,              | Closed Circuit         |
| 4-Foot Supersonic Unitary Plan Wind Tunnel (UPWT)  Test Section 1: Test Section 2: Mach 1.5 to 2.9 Mach 2.3 to 4.6  0.5 to 8.4 x 106 per ft 0.5 to 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3-Meter Transonic Cryogenic Tunnel (0.3-M TCT)   |                          |                          | · ·                                   |                         | •                        |                 |                | Closed Circuit         |
| High Speed Low Disturbance Facility (HSLD)  20-Inch Supersonic Wind Tunnel (SWT)  Mach 1.6 to 5.0 (0.35 to 0.75 for airfolls)  Copyright (0.35 to 0.75 for airfolls)  Supersonic Low Disturbance Tunnel (SLDT)  Rectangular Nozzle: Axisymmetric Nozzle: Axisymmetri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SUPERSONIC SPEED REGIME                            |                          |                          |                                       |                         |                          |                 |                |                        |
| Mach 1.6 to 5.0 (0.35 to 0.75 for airfoils)   Double   Dry Air   Blow Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Foot Supersonic Unitary Plan Wind Tunnel (UPWT)  |                          |                          | l ·                                   | 4'H x 4'W x 7'L         | 0 to 10 atm              | 100° to 300°F   | Dry Air        | Closed Circuit         |
| 20-Inch Supersonic Wind Tunnel (SWT)    Co.35 to 0.75 for airfoils   Co.9 to 20 x 106 per ft   20"H x 18"W   Co.2 to 130 psia   75" to 200°F   Dry Air   Blow Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | High Speed Low Disturbance Facility (HSLD)         |                          |                          |                                       |                         |                          |                 |                |                        |
| Supersonic Low Disturbance Tunnel (SLDT)         Nozzle:         Mach 3.5         0.9-27.2 x 10 <sup>6</sup> per ft         6.9" dia. open jet         10 to 150 psia         500 to 660°R         Dry Air         Blow Down           HYPERSONIC SPEED REGIME           Langley Aerothermodynamics Laboratory (LAL)         Image: Complex of the com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20-Inch Supersonic Wind Tunnel (SWT)               |                          |                          | 0.05 to 20 x 10 <sup>6</sup> per ft   | 20"H x 18"W             | 0.2 to 130 psia          | 75° to 200°F    | Dry Air        | Blow Down              |
| Langley Aerothermodynamics Laboratory (LAL)         Mach 6         0.5 to 8.0 x 10 <sup>6</sup> per ft         20"H x 20.5"W         30 to 475 psia         760° to 940°R         Dry Air         Blow Down           15-Inch Mach 6 High Temperature Air Tunnel         Mach 6         0.5 to 6.0 x 10 <sup>6</sup> per ft         14.6" diameter open jet         50 to 450 psia         970° to 1250°R         Dry Air         Blow Down           31-Inch Mach 10 Air Tunnel         Mach 10         0.5 to 2.2 x 10 <sup>6</sup> per ft         31"H x 31"W         150 to 1450 psia         1850°R         Dry Air         Blow Down           8-Foot High Temperature Tunnel (8-ft HTT)         Mach 3.5, 4, 5, 6, 7         0.44 to 5.09 x 10 <sup>6</sup> per ft         50 to 4000 psia         850° to 4000°R         Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Supersonic Low Disturbance Tunnel (SLDT)           | Nozzle:<br>Axisymmetric  | Mach 3.5                 | 0.9-27.2 x 10 <sup>6</sup> per ft     |                         | 10 to 150 psia           | 500 to 660°R    | Dry Air        | Blow Down              |
| 20-Inch Mach 6 Air Tunnel         Mach 6         0.5 to 8.0 x 106 per ft         20"H x 20.5"W         30 to 475 psia         760° to 940°R         Dry Air         Blow Down           15-Inch Mach 6 High Temperature Air Tunnel         Mach 6         0.5 to 6.0 x 106 per ft         14.6" diameter open jet         50 to 450 psia         970° to 1250°R         Dry Air         Blow Down           31-Inch Mach 10 Air Tunnel         Mach 10         0.5 to 2.2 x 106 per ft         31"H x 31"W         150 to 1450 psia         1850°R         Dry Air         Blow Down           8-Foot High Temperature Tunnel (8-ft HTT)         Mach 3.5, 4, 5, 6, 7         0.44 to 5.09 x 106 per ft         54.4" dia. Mach 3.5<br>70" dia. Mach 6<br>96" dia. Mach 4, 5, 7         50 to 4000 psia         850° to 4000°R         Air         810w Down           Scramjet Test Complex (STC)         Mach 2 to 8 *         0.035 to 2.2 x 106 per ft         10.89" square open jet         675 psia         2000° to 5200°R         Dry Air         Blow Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HYPERSONIC SPEED REGIME                            |                          |                          |                                       |                         |                          |                 |                |                        |
| 15-Inch Mach 6 High Temperature Air Tunnel  Mach 6  0.5 to 6.0 x 10 <sup>6</sup> per ft  31"H x 31"W  150 to 1450 psia  970° to 1250°R  Dry Air  Blow Down  14.6" diameter open jet  50 to 450 psia  970° to 1250°R  Dry Air  Blow Down  8-Foot High Temperature Tunnel (8-ft HTT)  Mach 3.5, 4, 5, 6, 7  Mach 3.5, 4, 5, 6, 7  Mach 2 to 8 *  0.035 to 2.2 x 10 <sup>6</sup> per ft  10.89" square open jet  50 to 450 psia  970° to 1250°R  Dry Air  Blow Down  850° to 4000°R  Air 2  Blow Down  10.44 to 5.09 x 10 <sup>6</sup> per ft  10.89" square open jet  10.89" square op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Langley Aerothermodynamics Laboratory (LAL)        |                          |                          |                                       |                         |                          |                 |                |                        |
| 31-Inch Mach 10 Air Tunnel  Mach 10  0.5 to 2.2 x 10 <sup>6</sup> per ft  31"H x 31"W  150 to 1450 psia  1850°R  Dry Air  Blow Down  8-Foot High Temperature Tunnel (8-ft HTT)  Mach 3.5, 4, 5, 6, 7  0.44 to 5.09 x 10 <sup>6</sup> per ft  70" dia. Mach 3.5 70" dia. Mach 4, 5, 7  Scramjet Test Complex (STC)  Arc-Heated Scramjet Test Facility  Mach 2 to 8 *  0.035 to 2.2 x 10 <sup>6</sup> per ft  10.89" square open jet  675 psia  2000° to 5200°R  Dry Air  Blow Down  Blow Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20-Inch Mach 6 Air Tunnel                          |                          | Mach 6                   | 0.5 to 8.0 x 10 <sup>6</sup> per ft   | 20"H x 20.5"W           | 30 to 475 psia           | 760° to 940°R   | Dry Air        | Blow Down              |
| 8-Foot High Temperature Tunnel (8-ft HTT)  Mach 3.5, 4, 5, 6, 7  O.44 to 5.09 x 10 <sup>6</sup> per ft  O.45 to 4000 psia  O.45 to 4000 p | 15-Inch Mach 6 High Temperature Air Tunnel         |                          | Mach 6                   | 0.5 to 6.0 x 10 <sup>6</sup> per ft   | 14.6" diameter open jet | 50 to 450 psia           | 970° to 1250°R  | Dry Air        | Blow Down              |
| 8-Foot High Temperature Tunnel (8-ft HTT)  Mach 3.5, 4, 5, 6, 7  0.44 to 5.09 x 10 <sup>6</sup> per ft  70" dia. Mach 6 96" dia. Mach 4, 5, 7  Scramjet Test Complex (STC)  Arc-Heated Scramjet Test Facility  Mach 2 to 8 *  0.035 to 2.2 x 10 <sup>6</sup> per ft  10.89" square open jet  675 psia  2000° to 5200°R  Dry Air  Blow Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31-Inch Mach 10 Air Tunnel                         |                          | Mach 10                  | 0.5 to 2.2 x 10 <sup>6</sup> per ft   | 31"H x 31"W             | 150 to 1450 psia         | 1850°R          | Dry Air        | Blow Down              |
| Arc-Heated Scramjet Test Facility Mach 2 to 8 * 0.035 to 2.2 x 10 <sup>6</sup> per ft 10.89" square open jet 675 psia 2000° to 5200° R Dry Air Blow Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-Foot High Temperature Tunnel (8-ft HTT)          |                          | Mach 3.5, 4, 5, 6, 7     | 0.44 to 5.09 x 10 <sup>6</sup> per ft | 70" dia. Mach 6         | 50 to 4000 psia <b>1</b> | 850° to 4000°R  | Air 2          | Blow Down              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Scramjet Test Complex (STC)                        |                          |                          |                                       |                         |                          |                 |                |                        |
| Direct-Connect Supersonic Combustion Test Facility  Mach 3 to 7.5 *  2 to 8 x 10 <sup>6</sup> per ft  115 to 500 psia  1600° to 3800°R  Hydrogen/Air 3 Blow Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arc-Heated Scramjet Test Facility                  |                          | Mach 2 to 8 *            | 0.035 to 2.2 x 10 <sup>6</sup> per ft | 10.89" square open jet  | 675 psia                 | 2000° to 5200°R | Dry Air        | Blow Down              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Direct-Connect Supersonic Combustion Test Facility |                          | Mach 3 to 7.5 *          | 2 to 8 x 10 <sup>6</sup> per ft       | 0                       | 115 to 500 psia          | 1600° to 3800°R | Hydrogen/Air 3 | Blow Down              |

#### SAMPLE TEST CAPABILITIES










Infrared Flow Visual

Acoustic Testing

Aeroelastic Testing

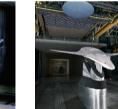
**Ground Wind Loads** 










Aerothermal Testing

Temperature / Pressure Sensitive Paint

Forced Oscillation Testing

Pressure Model Testing









Stability and Control High Angle-of-Attack Testing

Propulsion Airframe Aeroacoustic Testing

Free Flight

Ground Effects

Propulsion System Testing Jet Effects Testing

Performance Testing







Shadowgraph Flow Visual

- Advanced Forced Balances
- Dynamic Data Systems
- Dynamically-Scaled
  - High-Speed Schlieren and Shadowgraph
- IR Thermography Background-Oriented & Focused Schlieren
  - Particle Image / Tracking Velocimetry



- 1 Customer specifies altitude 2 Vitiated Heater (air, methane, lox) 3 Hydrogen-air combustion products with oxygen replenishment 4 Two-dimensional nozzles: Mach 2.0 1.52"H x 3.46"W and Mach 2.7 1.50"H x 6.69"W